First semestral exam - November 17, 2023

B. Math. (Hons.) 2nd year
 Group Theory
 Instructor : B. Sury
 Each question carries 9 points.

Q 1. Let H, K be subgroups of a group G. Prove that, for any $a, b \in G$, the sets $H a K$ and $H b K$ are either disjoint sets or the same set. Further, show that

$$
|H a K|=\left|H \cap a K a^{-1}\right||K| .
$$

OR

If H is a subgroup, and N is a normal subgroup of a finite group G such that $O(H)$ and $O(G / N)$ are relatively prime, then prove that $H \leq N$.
Hint. Consider the left action of H on G / N.

Q 2. If a p-group P acts on a set S whose size is coprime to p, show that G must fix a point. If P is a p-Sylow subgroup of a group G, prove that its action by left multiplication on the set $G / N_{G}(P)$ of left cosets of $N_{G}(P)$ has a unique fixed point which is the identity coset.
Hint. How many p-Sylow subgroups does $N_{G}(P)$ have?

OR

If H, K are subgroups of a group G, denote by $[H, K]$, the subgroup generated by elements of the form $h k h^{-1} k^{-1}$ with $h \in H, k \in K$. If $D_{0}(G):=$ $G, D_{i+1}(G):=\left[D_{i}(G), D_{i}(G)\right]$, show that every automorphism $\theta: G \rightarrow G$ maps each $D_{i}(G)$ into itself.

Q 3. Let G_{n} be the group of invertible $n \times n$ matrices with entries from a field K such that $g_{i i}=1$ for all i and $g_{i j}=0$ for all $i>j$. Let $n \geq 3$.
(i) Find the center of G_{n}.
(ii) If $K=\mathbb{F}_{p}$, for a prime p, prove that G_{n} is a p-Sylow subgroup of $G L_{n}\left(\mathbb{F}_{p}\right)$.
Hint. The order of $G L_{n}\left(\mathbb{F}_{p}\right)$ is $\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$.

OR

(i) Prove that \mathbb{Z}_{3} is not isomorphic to a quotient group of S_{4}.
(ii) If p is a prime, and P is a subgroup of S_{p}, of order p, then $\left|N_{S_{p}}(P)\right|=$ $p(p-1)$.
Hint for (i). If it is, what is the order of the kernel?
Hint for (ii). A subgroup of order p in S_{p} is cyclic generated by a p-cycle. Also, for any finite group G and a subgroup H, the number of different subgroups of G conjugate to H equals the index of the normalizer of H in G.

Q 4. If G is a group of order 26985, prove that its center has order at least 257.

Hint. 257 is a prime number.

OR

Consider the subgroup

$$
A:=\{(30 x+42 y, 105 x+231 y): x, y \in \mathbb{Z}\}
$$

of $\mathbb{Z} \times \mathbb{Z}$. Find the smallest positive integer d such that $(d, 0),(0, d) \in A$. Hint. The question asks for the exponent of the finite, abelian group $(\mathbb{Z} \times \mathbb{Z}) / A$ 。

Q 5. Consider the action of $G L_{2}(\mathbb{R})$ on the set S of real, symmetric 2×2 matrices by $(g, A) \mapsto g A g^{t}$ for $g \in G L_{2}(\mathbb{R}), A \in S$. Describe the orbits of this action.

OR

Let G be the group of real matrices $\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)$ with $x>0$.
(i) Describe the conjugacy classes in G.
(ii) Determine the set of 2×2 matrices A such that $e^{t A}$ belongs to G for all $t \in \mathbb{R}$.

